Optimization and its Application
نویسنده
چکیده
The quantum particle swarm optimization (QPSO) algorithm exists some defects, such as premature convergence, poor search ability and easy falling into local optimal solutions. The adaptive adjustment strategy of inertia weight, chaotic search method and neighborhood mutation strategy are introduced into the QPSO algorithm in order to propose an improved quantum particle swarm optimization (AMCQPSO) algorithm in this paper. In the AMCQPSO algorithm, the chaotic search method is employed to promote the quality of initial population. The adaptive adjustment strategy of inertia weight is used to adjust the global search ability and local search ability of particles in the running process of QPSO algorithm. The neighborhood mutation strategy is used to increase the diversity of population and avoid premature convergence. Finally, in order to evaluate the performance of the AMCQPSO algorithm, several well-known benchmark functions are selected in this paper. The experiment simulations show that the proposed AMCQPSO algorithm can effectively improve the quality of solutions, and takes on powerful optimizing ability and more quickly convergence speed.
منابع مشابه
PARTICLE SWARM-GROUP SEARCH ALGORITHM AND ITS APPLICATION TO SPATIAL STRUCTURAL DESIGN WITH DISCRETE VARIABLES
Based on introducing two optimization algorithms, group search optimization (GSO) algorithm and particle swarm optimization (PSO) algorithm, a new hybrid optimization algorithm which named particle swarm-group search optimization (PS-GSO) algorithm is presented and its application to optimal structural design is analyzed. The PS-GSO is used to investigate the spatial truss structures with discr...
متن کاملApplication of Multi-objective Optimization for Optimization of Half-toroidal Continuously Variable Transmission
Among different goals defined in vehicle design process, fuel consumption (FC) is one of the most important objectives, which significantly has taken into account lately, both by the customers and vehicle manufacturers. One of the significant parameters which impacts the vehicle FC is the efficiency of vehicle's power train. In this paper, a half-toroidal continuously variable transmission (CVT...
متن کاملNeuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for Robot Optimal Controller Design
The main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrectionstrategy supported by a recurrent neural network for finding a near optimal solution of a givenobjective function. Recently there have been attempts for using artificial neural networks (ANNs) in optimizationproblems and some types of ANNs such as Hopfield network and Boltzm...
متن کاملA New Multi-Objective Optimization Method Based on Genetic- Fuzzy Algorithm and its Application in Induction Motor Speed Control
In this paper, a new method based on genetic-fuzzy algorithm for multi-objective optimization is proposed. This method is successfully applied to several multi-objective optimization problems. Two examples are presented: the first example is the optimization of two nonlinear mathematical functions and the second one is the design of PI controller for control of an induction motor drive supplie...
متن کاملApplication of Clayton Copula in Portfolio Optimization and its Comparison with Markowitz Mean-Variance Analysis
With the aim of portfolio optimization and management, this article utilizes the Clayton-copula along with copula theory measures. Portfolio-Optimization is one of the activities in investment funds. Thus, it is essential to select an appropriate optimization method. In modern financial analyses, there is growing evidence indicating the distribution of proceeds of financial properties is not cu...
متن کاملA New Multi-Objective Optimization Method Based on Genetic- Fuzzy Algorithm and its Application in Induction Motor Speed Control
In this paper, a new method based on genetic-fuzzy algorithm for multi-objective optimization is proposed. This method is successfully applied to several multi-objective optimization problems. Two examples are presented: the first example is the optimization of two nonlinear mathematical functions and the second one is the design of PI controller for control of an induction motor drive supplie...
متن کامل